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Abstract—The paper considers a problem which was first treated mathematically by Lighthill in 2
different physical context. Solutions are provided for the limiting case of forced convection across a
turbulent boundary layer when Pr — 0, i.e. when the thermal boundary layer is wholly confined
within the laminar sublayer whose velocity profile is linear.

The case of a flat plate with a uniform temperature or with one step in temperature is treated in

great detail, and a convenient tabulation of formulae for a number of cases is provided.

The case of a variable wall temperature is solved in two ways. First, the temperature distribution is

replaced by a sequence of steps and superposition is used. Secondly, an exact analytic solution is given
for the case when the temperature function consists of a step followed by a distribution given analyti-
cally. In the latter case, closed-form equations are given for a polynomial temperature variation of
which a linear temperature variation is a special case.

LIST OF SYMBOLS

A, constant;

A, constant;

a, thermal diffusivity;

B, constant;

b, width of heated portion;

C,, constant;

Cs, constant;

Cts coefficient of skin friction;

k, thermal conductivity;

L, length of laminar portion of bound-
ary layer;

/. length of plate;

Nuy, average Nusselt number; based on
total length /;

Nu,, local Nusselt number; based on
current length x;

Nu,, local Nusselt number; based on
distance x — x4, equation {22);

n, integer exponent in power series for
temperature distribution;

Pr, Prandt] number;

O, rate of heat flow per unit width and
time measured at wall;

* Professor of Engineering, Brown University,

Providence, R.1.
t Visiting Professor, Brown University, Professor at
Norges Tekniske Hogskole, Trondheim, Norway.

355

q?('!
Recrit,

Rela
Re,,
Re.,
Ste,
T.
T,
T
U,

u,

z,

heat flux at wall;

Reynolds number based on length
L at transifion;

Reynolds number; based on total
length /;

local Reynolds number; based on
current length x;

local Reynolds number; based on
X — X, €quation (22);

local Stanton number; based on
current length x;

temperature;

free-stream temperature;
temperature at wall;

free-stream turbulent velocity;
average longitudinal velocity com-
ponent in boundary layer;

average transverse velocity com-
ponent in boundary layer;

friction velocity;

longitudinal co-ordinate;
co-ordinate at temperature step;
stretched longitudinal co-ordinate,
equation (11);

stretched width of heated portion;
stretched width of step in tempera-
ture, equation (43);

transverse co-ordinate;
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dimensionless transverse co-ordinate,
equation (8).

Y * H

Greek symbols

a, Blasius constant, equation (24); also
parameter in incomplete gamma
function, equation (17a);

I' (a), gamma function of argument a;

I' (a, ), incomplete, complementary gamma
function of argument = with para-
meter o, equation (36);

y (a, 1), incomplete gamma function of argu-
ment n with parameter a, equation
(17a);

8 (x),  velocity boundary layer thickness:

8r (x), thermal boundary layer thickness;

7, similarity parameter, equation (13);

o, temperature ratio, equation (33);

6 temperature difference, equation (2):

o0, difference between wall- and free-
stream temperature;

9, temperature difference, equation
(32);

Do difference between wall- and free-
stream temperature ;

Do s temperature difference for n-th step:

44, temperature step in  step-wise
approximation;

A dummy variable of integration;

v, kinematic viscosity;

¢, dummy variable of integration;

P, density;

o, variable defined in equation (10):

T, shearing stress;

Tw shearing stress at wall;

i, stream function.

1. INTRODUCTION

THERE exists one limiting case of forced con-
vection across a turbulent boundary layer
which can be solved analytically entirely from
first principles. It is the case when the thermal
boundary layer is confined entirely within the
laminar sublayer. Such conditions prevail very
close to the beginning of a thermal entry length
in a boundary layer at all Prandtl numbers, or
over the whole of the downstream length of a
thermal boundary layer at very high Prandtl
numbers, or more precisely when Pr — oc.

The attendant mathematical problem was first
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solved by Lighthill [1] in an entirely different
physical context, namely in connection with the
calculation of heat transfer rates across laminar.
compressible boundary layers. The relevance of
Lighthill’s solution to turbulent boundary
layers was first pointed out by Spalding [2].

In the present paper we shall give an elemen-
tary solution of the problem and work out its
implications to a point when they can be applied.

The amenability of the problem to such a
treatment turns on two circumstances. First.
there is no need to consider the whole of the
velocity boundary layer, and attention can be
confined to the laminar sublayer only. because
the boundary condition for temperature “at
infinity” is attained very fast, owing to the
boundary layer nature of the solution for the tem-
perature profile. This permits us to base the
analysis on the laminar form of the energy
equation which can now be written

cf 6 beed?) |
- U =455
e cr a4 or? H
using the notation of Fig. 1.
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F1G. 1. System of co-ordinates and notation.
Here

is the temperature difference between that at a
point x,y and at the wall. The boundary con-
ditions for § are

=0 aty =0 andallex(,W‘
0 =0patx =x,andally 20 ¢ (la)
O:Bwaty:ooandalleonl
with
8 — T — Too (1b)
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denoting the overall temperature difference,
not necessarily constant, across the boundary
layer. The second simplification consists in the
fact that the variation of » with y is linear, so
that the stream function can be written

re 5

p=1-
where
0 (%) = {70/ p}t2 = Unlle)® (3
is the friction velocity,
Tw = %pgi(‘f, )
denoting the skin friction at the wall. Hence
u = z vy and r=—1% de)/dx — 3% (5
v v
Thus the equation to be solved is
1i 60 d L dx 69 820

subject to the boundary conditions (1a).

The preceding equations have been written on
the assumption that the physical properties of
the fluid, its density p, kinematic viscosity », and
thermal diffusivity a are independent of tempera-
ture. In general, this is a poor assumption for
liquids, because when their Prandtl number is
large, their properties vary strongly with
temperature. However, the variation of such
properties with temperature is complex and
cannot be taken into account at present. In
applications it is therefore necessary to choose
proper mean values.

In all problems of practical interest, the free-
stream temperature 7 can be assumed constant,
but the wall temperature T,, need not be constant.
Thus 6. may be variable, and a prescribed
function of x. We shall consider both cases, and
in both cases we shall provide solutions which
are valid from point x = x, at which the thermal
boundary layer is assumed to begin its develop-
ment. Since equation (6) is linear, superposition
can be employed to develop more complex
solutions from simple ones.

2. STEP IN WALL TEMPERATURE\VARIATION

We begin by considering the case when the
wall temperature T, is constant being equal to
T» for x < x, and to another value 7, for
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X = x,, undergoing a jump at x = x,. Hence
f» is now constant.

From the nature of the problem it can be
foreseen that the solution must appear in the
form of a family of self-similar temperature
profiles, because there exists no characteristic
length which governs the development of the
thermal boundary layer. Hence, the problem
must be reducible to an ordinary differential
equation, it must be expressible in terms of a
single variable, say 7, and the only difficulty
lies in indicating the required transformation.

By introducing the ratio

T,—T 6
T, T @)
we can first reduce the values of the dependent

variable in the boundary conditions to pure
numbers, namely

® =0aty =0 andall x = x, l
@ =1atx =xpandally = 0 (7a)

|

6 =

Y

@ =1laty =owandallx = x,

and the partial differential equation is still

v: 00 d@?)/dx 8@ &0
*;,V Frae 3 — " J’zg}‘; —a@;@‘ (Tb)

Tt is recalled that the energy equation can be
simplified considerably by the application of the
von Mises transformation [3, 4] in which the
dependent variable is expressed in terms of x,
and the stream function ¢. If this form were
written it would become immediately apparent
that in the present case it is more convenient to
use the square root of the stream function, /3,
as the second independent variable, making it
dimensionless by the factor »~V2. In view of
equation (3) this suggests the choice of

yt = 'XE*.‘

' v

®

as the independent variable. Substitution into
(7b) leads to
v 06

5. %

a *0
X ®

the constant a/v = 1/Pr can be absorbed into
the equation by putting

y+
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==y Pl (10)
and the function v, /v can be absorbed by putting
Xt = j x dx. (1D

Ty v
With these substitutions, equation (9) becomes
00 &6

T T 12

In order to take advantage of the observation
that the problem must lead to a set of self-
similar profiles, it is now necessary to find a
combination of the independent variables
n(e, x*) which will reduce the second and third
boundary condition (7a) to one. It is easy to see
that any expression of the form

Fe i

U:'xt

(13)

will achieve this, since

X == x4 corresponds to x* =0
and renders n = =

y = oo corresponds to o = «©
and renders n = oC.

The only remaining problem is to determine a

value of the exponent m in equation (13) which

will result in the transformation of equation (12)

into an ordinary differential equation for 6(y).
By substitution, we find that

a® VORPr .

T j v, dx (9

’ v
E

achieves our purpose, the numerical factor 9

having been added on aesthetic grounds. Intro-
ducing (8) we can also write

_(Pr

7 o= 9‘x . (143)

Substitution of the appropriate form (14) into

equation (12) or directly into equation (7b) leads

to the ordinary differential equation

de de
T g + @ +3 = 0

(15)

for the function 6(z), with the boundary
conditions
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(2] *’latnAJ‘
@ =0aty =0 j

This equation can be solved by repeated
integration. Its first integral is

de as ‘

g = Cmtrexp () (16)
and the second integral is

O = G+ Corlg my a7
where

(o, ) = .:;7 e Al dA (17a)

is the incomplete gamma function {5. 6, 7].
Noting that

yla, o0} = I'(a) and that ¥(a, 0} =0
it is easy to show that
3.1
@ — y(37 17_
0 = "1 (18)

constitutes the solution to our problem. The
resulting universal temperature profile is shown
plotted in Fig. 2. The vaiues of the incomplete
gamma function have been taken from [6] and
the constant

I't}) = 2-6784.

A short table for the function &) is also
given, Table 1.

The rate of heat transfer is calculated from
the heat flux ¢, at the wall,

o — k (fﬁ'a‘) = kbs (dg 0;7)

8}“ y=0 d’/’? (19)

Ju=9

It is noted that at y =0, d&/dy is singular,
but 66/ay is regular. Referring to equation (16).
we can write

d®  exp (—7)
& ) (1%)
and from equation (14)
o _ yuiPr
gy 3u3x] (19b)
Hence
00 3V Prv 3exp (——ﬂ)) (196)
C

&y~ T (é) (xs
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Fi1G. 2. The universal temperature profile.

Table 1. Values of the function ©(n), equation (18)

7 ()
0-00 0-0000
0-02 0-3025
0-04 0-3793
0-06 0-4320
0-08 0-4732
0-10 0-5073
0-12 0-5364
0-14 0-5620
0-16 0-5848
0-18 0-6054
0-20 0-6240
0-40 0-7496
0-60 0-8203
0-80 0-8694
1-00 0-9032
1-20 0-9272

1-40 0-9448
1-60 0-9576
1-80 09670
2:00 09743
2-50 0-9862
3-00 09924
3-50 0-9958
4-00 0-9976

and finally, from equation (19) it is seen that
) 33, lv  kfoPri3
™=TR) O
The most convenient dimensionless form is

obtained by introducing the local Stanton
number,

(20)

e Preiyen
Ste = e Ut~ 0P s B
where
313/1(3) = 0-53835. (21a)

It is now a simple matter to derive expressions
for the local Nusselt number Nu, which may
be more convenient in applications. A short
derivation yields the formula

Nu, ="

== 0-53835 (3¢,)/2Re(Prix+)t3,  (22)

where _
_ Uslx — xo)

Re,

14
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Average Nusselt or Stanton numbers cannot be
computed at this stage explicitly. because their
values depend on the variation of ¢,(x) along the
flow. They will be discussed in connection with
particular examples later, when more directly
applicable equations will be given [section 3].

When computing temperature profiles. it is
found that existing tables [6] are inadequate at
small values of ». It is then useful to remember
that [5. 7]

y(1/3.9) ) (23)

3. SPECIALIZATION TO THE CASE OF A FLAT
PLATE AT ZERO INCIDENCE

3.1. Isothermal plate

The preceding results will now be applied to
a flat plate, and two cases will be considered.
In the first case it will be assumed that the
thermal boundary layer, dr(x), develops from
the edge onwards, Fig. 3, so that x, = 0, and
the plate is isothermal. The velocity boundary
layer, 8(x), will start by being laminar, will
undergo transition, and then become turbulent.
This, however, has no bearing on the resulting
solutions, except for affecting the form of v (x).
since all along the plate the thermal boundary
layer will develop in regions where the velocity

= 3771 1 — i’? e 114772 + o

3x)

: ST(X)
1 !
| | |
! i
- |
!
I ‘
s ;
! i1 [
| 9
ISR
FiG. 3. Isothermal case.
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profile u(v) is linear.* Since not enough is known
about the conditions in the transition zone. it
will be assumed that transition is sharp. oceurs
at a definite critical Reynolds number and that
its value has been determined independentis .

In the laminar range

v, gl 2t 1[':.;;4.\.——\ 1

with
a = 0-332,
Then
X7 == e (x) dxfy e dal 2e B4 Ot vt

and the local Stanton number is given by
St, = 0-339 Pr—2%Re "™ ¢25)

where now

It is remarkable to note how little this expression
differs from the Blasius solution for the flat
plate [3],

St, = 0-332 Pr—23Re ' 123a)
which is not restricted to high Prandtl numbers.
The form of the equation is reproduced
accurately, and only the numerical constant is
too high by about 2 per cent. Since equation
(25a) can also be derived from the Reynolds
analogy

Sty == 50y

by adding the empirical factor Pr % 1o it,
equation (25) demonstrates that the resulting
relation remains quite accurate for very high
Prandtl numbers.

In the turbulent range. the shearing stress
can be adequately approximated by the equation
derived from the 1-th power law, on condition
that the Reynolds number is not too high. Thus

— (00296)1/2 0090/101,1/10_\-—1/10. {26)

The persistence of a linear segment of the velocity
profile at the wall throughout the transition zone has
been observed by Klebanoff who was kind enough to
communicate this matter privately to one of us (J.K.1.
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It was shown by Prandtl [3] that a turbulent
boundary layer on a flat plate behaves as if it
had started at the leading edge*, consequently

X~ = [Fr (x)dx/v
p— ,%,(0.0296)1 2 V79 10 Uj9/10 x9,’10
and
St, = 0-161(Pr)~22Re:?", @7

There is no difficulty in computing the average
values, and in this case it is perhaps more
convenient to employ the Nusselt number
based on the total length / in the working
formulae. For a laminar portion of length /, we
obtain

Nu, = 0-679 Pri’3 Reli,

For a plate of length / on which the laminar
portion extends over a length L(L <), we

obtain
(0677 0-268 (L\3®
= S [ b 1.3
= G+ S (0
(29)
where
UxL
Recriy = ==
v

is the Reynolds number for the point of transi-
tion, and the subscript / denotes that the
respective groups refer to / as the characteristic
length.

Finally, for a flat plate with a tripped boundary
layer. i.e. a turbulent boundary layer starting
at the leading edge

Nu, = 0-161 Re®? pr13 (30)
and
Nuy = 0-268 Red® Pri3, (30a)

This result can be used to evaluate the applic-
ability of the Prandtl-Taylor or von Karméan [3]

* This assumption is sufficiently accurate for many
purposes. In actual fact, the virtual beginning of the
turbulent boundary layer is not exactly at the leading
edge, and this circumstance can be easily allowed for if
necessary.
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theories of heat transfer on a flat plate. It is
well-known that the above theories are applicable
only to Prandtl number differing little from
unity [8] when they can all be fitted numerically
by the equation

Nu, = 0-0296 Re'* Prl/3, (30b)
A comparison of equations (30) and (30b) shows
that the elementary theories reproduce correctly
the dependence on the Prandtl number, but that
the Reynolds number dependence is over-
estimated, the exponent being equal to 0-8
instead of 0-6; they cannot, therefore, be applied
to fluids with high Prandtl numbers. The two
relations, (30) and (30b) provide, therefore, an
upper and a lower bound for the WNusselt
number, when the Prandtl number lies in a
range intermediate between unity and a very
large value.

3.2. Step in wall temperature

The next case of importance occurs when the
temperature along the plate is not uniform, but
undergoes a step-like change from T, = T
©O=1) at x<x, to T,#*Tw (@ =0) at
x > x,. Depending on the position of x, with
respect to the point of transition at x = L, it is
necessary to distinguish a number of specific
cases. Each case involves rather obvious
integrations which need not be discussed in
detail. The results of these integrations are
given in Table 2 which includes the cases
discussed in section 3.1 for the sake of complete-
ness.

4. VARIABLE WALL TEMPERATURE

4.1. Lighthill’s solution

Lighthill’s original paper [1] contained an
extension of the preceding theory to the case
of an arbitrary temperature distribution along
the wall. The local heat flux ¢, at a position x
along a cylindrical wall having an arbitrary
temperature distribution 7,(x) from section
xo = 0 onwards was given in the form of the
following Stieltjes integral

318y (x)(* dd(¢)
') .v JL [x7(x) — xHO*
(31)

Gulx) = —k
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Lighthill’s equation (29) of Ref. 1 has been
transcribed here in our notation in order to
clarify the sequence of operations required to
evaluate §,(x). First, Fig. 4, it should be noted
that here

Fic. 4. Notation for Lighthill’s solution, equation (31).

=TT (32)

and that, in general, in problems involving a
variable wall temperature T,(x), the definition
(32) is more convenient than that in equation
(2) because only cases in which Tw = const are
of practical interest. We shall give preference
to the variable ¢ over 8 in the present section.
Secondly, it should be noted that x*(x), defined
in equation (11) denotes a constant value in the
process of integration, namely the value of x~
at the station at which ¢, is being evaluated. The
quantity x*(¢) is defined as

¢

x(8) = J 20 4

0

and denotes a function, ¢ being the dummy
variable of integration in equation (31).

The procedure to be adopted in evaluating
the integral (31) depends on whether the tempera-
ture distribution #(¢) is continuous or whether
it involves step-like jumps. In the former case
d9(¢) = (&) d¢, and the evaluation is straight-
forward, except that one reservation must be
made. Often, the function, J(¢) will be given by
a discrete set of measured values, and the
determination of #(§) will require fairing. As a
result. the calculation may be grossly in error.
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When the temperature distribution #(¢) in-
volves discontinuities, in particular when it is
given as a sequence of steps from measurements,
it is necessary to perform the integration without
introducing (x). This is best done by
eliminating, for example graphically, the co-
ordinate ¢ from the two functions x*(¢) and
9(€) and by integrating the resulting relation
[x*(x) — x*(#)]-V3, in which x*(x) is a constant
parameter as far as the integration is con-
cerned, as already mentioned, and by integrating
with respect to 9 directly.

It is clear that either method is cumbersome
in practice. The principal motivation for
undertaking the calculations described in the
remainder of this section was to arrive at
formulae which could be more easily adapted
to actual computations.

4.2. Two steps in temperature

The simplest practical case of variable wall
temperature, apart from the ones considered
in sections 2 and 3, involves a portion of the
wall of length b heated to a constant temperature
T, different from the remainder which is main-
tained at T, Fig. 5(a). The present case is also
important in that it will illustrate the method of
dealing with completely arbitrary wall-tempera-
ture distributions to be discussed in section 4.3.
The general method makes systematic use of the
fact that the energy equation (1) is linear and
that superposition can be employed to generate
complex solutions from the simple solution
given in equation (18) of section 2.

It is now more convenient to put

T—To . To—T

@:TM«TOO“ T, T

instead of the definition in equation (7). Equation
(12) still remains valid in either of the two
regions marked I and II in Fig. 5. However,
owing to the change in the definition of &, the
boundary conditions (15a) will change to

O =0atn = w0

O=1latn=0 (34)

it being necessary to exercise some care in the
interpretation of » for either of the two regions.
The change in the boundary conditions has the
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Fia. 5. Two steps in temperature.

effect of changing the solution in equation (18)
to

IG.n
6 = o (39)

where
I'{a,n) = }j; e=A XAl dA = I(e) — Aa. ) (36)
is the complementary incomplete gamma

function {7], and I'(e) denotes the ordinary
gamma function.*

* This unfortunate notation, though accepted, may be
somewhat confusing, but in this paper the two functions
I" will always be written with the parameters and variables
shown in the parentheses to avoid misunderstandings.

The solution in region I remains unaffected by
the second step, and is the same as for the case
illustrated in Fig. 5(b). It is thus

oy (3, 0P

01 - F(%)T(3* Ox , :
In region II it is necessary to take into account
the second step in temperature which occurs at
X ==Xo+ b or at x* = x7. We therefore con-
sider the case illustrated in Fig. 5(c) for which
the solution will be identical with (37) except
for the fact that the origin must be shifted to
xt = xy so that x* must be replaced by
x+ — x7 in the argument of the function, where

] E'*
N == o dx.

Xy

(37)

(38)
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Furthermore, a negative sign must be appended
since & decreases by unity instead of increasing.
Superimposing the cases shown in Figs. 5(b)
and 5(c), we obtain the boundary conditions
which are valid in region II, Fig. 5(a). At
X == Xq + b, the temperature profile consists
of @, with the boundary condition for case 5(c)
namely ® = 0 superimposed on it, and is the
one actually prevailing. Consequently, in region
II, we have

O = m) i (s 023?)

-1 9&?}:&))} '

The parameter x7 defined in equation (38) and
appearing in equation (39) characterizes the
extent of the zone of elevated temperature
along the wall. Tt is easy to see from equations
(37) and (39) that the temperature field is
contintous at x = x, + b, i.e. at the point
where the wall temperature drops suddenly
from T, to Tw, because

(39)

I'G, ) =0
Furthermore
o6y o0
g; == 5;;: atx = x, -+ b
at any value of y+, because
¢
gy (@) = — ey > 0asy > .

The rate of heat transfer in region I is given
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by the formulae of section 2, whereas the rate
of heat transfer in region II can be easily
calculated by differentiation from equation (39).
In this manner it is found that

(28 ] - (]

Prl/fi / x+ 1/3
= 0-53835 s [1 ( —— 5_;_-) ] (40)
{see equation (21a)), and that
:’aﬁll) r Pr1/3
(\ o )= 0S8

- 3 173
1= () | o=t @
or \
Pr—2‘3v(%cf) 3 x+ 1/3
St = 0:53835 31 [1 — (x+ . xj) ]
@2

Since the problem under consideration in-
volves a constant imposed temperature
difference, T, — Tw, the local rate of heat
transfer ¢,, is proportional to it. Thus a Stanton
number can be formed. In more complex cases
the Stanton and Nusselt numbers lose their
utility because such problems do not contain a
physically meaningful characteristic temperature
difference for reference.

It is interesting to examine the trend in the
form of the temperature profiles downstream
from the second step in temperature. This is best
done by considering a specific example, Fig. 6,

-]
\X*=l‘00 Xtz P0G \X'=I-IO \X.’—IZO X*=150 ; Xt= 200
1 1o} - 5\
2N \ N\ \ ) A
9 ; S . N\,
08 N N N\
AN b S AN \,
\\ N, ~, ~, \\
o] @ 2] ® j3¢] s} [2e] [¢] 0 0 343 o 0
—
>

._x;; [R—

Fi1G. 6. Temperature profiles downstream of the second step.
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with x7 = 1. The temperature profiles have been
plotted as @ = (T — T)/(T,, — Twx) against

vTPri/3/913 for convenience, the plots 1ncludmg
the values x* = 10, I-1, 12, 15 and 2-0. 1t is
interesting to note how fast the disturbance
caused by the second step disappears on pro-
gression in the downstream direction. The
broken curves in Fig. 6 represent temperature
profiles which would exist at the respective
positions x* if the wall temperature 4, continued
at its constant value without suddenly decreasing
to zero at x* == |. A comparison of the two
sets of profiles gives an idea of how deeply the
sudden drop in temperature penetrates into the
boundary layer.

4.3. Arbitrary temperaiure distribution; step-wise
approximation
The preceding case can be easily generalized
to an arbitrary temperature distribution, Fig.
7, if the latter is replaced by a sequence of
discrete jumps. The partial solution for the n-th
jump at

can be written

and L.

N. PERSEN

The complete solution for the interval
Xy, T X <X (43a)

is thus seen to be

" IS‘(I

() a—

(y+)3P’. k .
T, M) . A?jn‘é .

(44)

It is equally easy to write down the expression
for the local heat flux, namely

. kl’*(x) . Prid : Al‘lu
= — (-53835 " Z(“XA B
n=1

43
in the interval (43a). Alternatively

=i

— 0'53835;)62,1;*(_75)1),.—2:3

H

§ulx) =

44,

":"\Jr S (452)

— (x
It is easy to verify that equation (45a) reduces
to equation (42) for the case of two consecutive
equal steps of opposite sign. There is little

——

1 G)pr
9, = T ) A9, (43
O BT r—— (43)
Tl
‘Aﬂ‘w AT, x
) [ Tun® Tot b,
59
|
¥
ol
e xt

5,5

F16. 7. Arbitrary temperature distribution.
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advantage in representing the heat flux in the
form of a Stanton number, because now 44,
denotes an arbitrarily chosen step in temperature
to which no physical meaning can be attached,
as anticipated in section 4.2, and because the
local rate of heat transfer does not appear in a
form involving the local temperature difference
ﬁu',n-

The preceding formulae are easy to apply in
practice, and for a given smooth temperature
variation, it is always possible to inscribe as well
as to circumscribe a step polygon, Fig. 8, in order
to obtain two bounds for ¢,(x). The total rate
of heat transfer Q, is obtained by integration
in the usual way.

~——=

[ x*

F1G. 8. Two bounds for the solution.

The relation in equation (45a) provides a
complete solution to our problem, but there is
some advantage in adopting a more analytic
approach which leads to an alternative form of
the solution.

4.4. Arbitrary temperature distribution; analytic
solution

When the temperature distribution along the
wall, ¢#,(x), is given in an analytic form, it might
appear that the most convenient method of
writing the solution is simply to pass to the limit
of 49,0 in equation (44) or (45a) thus
replacing the sums by integrals. A straight-
forward passage to the limit reduces equation
(45a) to Lighthill’s form, equation (31), and this
would cause the difficulties discussed in section
4.1. 1t is, therefore, preferable to start with
equation (12), which is seen to be valid for .
i.e. with '

&9 a9

O - = .
oxt do?

(46)
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This being a linear equation, it is natural to solve
it by the use of a transform, and in this con-
nection the Hankel transform proves to be very
convenient. It would be tedious to repeat here
the otherwise standard computations, and it is
sufficient to quote the final result, namely

el s 0.3
J [’f’w(ﬁ ~or ,)]

X e~t t~23 dr,

#o, xt)

b
I
(47)

or alternatively

o, x1)
— [ ) at 'ﬁu'(z) eXp [—0’3/9(X+ _ :)] dz
= 7)), G

(47ay

where 4,(2) is the variation of the wall tempera-
ture ¥, expressed in terms of the variable x—.
ie. d,(x").

It can be verified that either of the forms (47)
or (47a) satisfies the differential equation (46)
and the boundary conditions

# =0 for x* =0 and o - o0, i.e. y7—> ©
4 = d(x*) for o - 0 and any x*, i.e. for y+ =0,

(47b)

Substituting o from equation (10) and noting
that

1

47c¢c)
we can also write
Hxt, p*) = 0019928 y+Pr13

x j Fo(2) exp [— (37 Pr/9(x* — 2)] dz

o (x+ . :)4/3

The gradient of temperature at the wall
involves the factor

. 33 §.(0) exp (— o3/9x7)
éo  I(13) (x )1 -
at 79‘10(;:) . €Xp [_ 03/9(x.k - ZO‘)] z
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in which o - 0 must be substituted. The expres-
sion has been established for the case when 9,,(x)
undergoes a jump #.{0) at xv =0 and then
varies continuously in a manner prescribed by
#.{x). The local heat flux is then

Gux) = 0-53835 pc,v (x)Pr2?
o1

: [(w)” N

Readers familiar with the theory of Stieltjes
integrals might have been in a position to write
down equation (49) directly from equation (31)
derived by Lighthill, realizing that the first term
in square brackets is the contribution due to
the initial jump 9,(0), and that the second term
in it, the integral, represents the contribution of
the continuous part of the temperature variation,
all upstream of the position x. It is seen from
equation (49) that the local heat flux is no
longer proportional even to the local tempera-
ture difference ¢,,(x), but depends in an intimate
way on the whole of the upstream temperature
distribution ,.(x).

5. SPECIAL CASES OF PRACTICAL IMPORTANCE

Considering the large number of possible
temperature distributions as well as the possible
forms of v,(x), it is realized that the formulae of
the preceding section cannot be specialized to
the same extent as those in section 3. Neverthe-
less, in order to facilitate practical computations,
it is useful to record explicit expressions for wall
temperature distributions given by a power
series. Considering one term of the series, i.e.

Py = Adx7)",

where » is an integer, it is possible to show
directly by substitution into equation (49) that

Gulx) = 0-53835 pe,v, (x)Pr—234,

Lo+ DIG) Gy T+ 1)
Tt e 0P ey
Pux)

X peyy (X)Pr—%3 ey

(50)

and L. N.
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For the power series

3
<} [

thy, 7= X

Ay

W=

we obtain the sum

P -3 3
i) — 072901 PErUHDPT

(x )33
Y‘ I'(n - 1) _ .
oA, (x P (3
4.4 I(n — %) (%)
Finally, for
$,. = Ax" — B.
we have
o Pr23
§u(x) = 0-53835 pe,r (X) =t (3 Ax+ -
’ 52

Some readers may prefer to approximate an
empirical temperature distribution J,(x). ex-
pressed in the form #,(x*), by straightline
segments rather than by steps. In such cases
equation (51) will prove to be of value.
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Résumé—L article considére un probléme qui a été traité mathématiquement pour la premiére {fois par
Lighthill pour des conditions physiques différentes. Des solutions sont données dans le cas de la
convection forcée a travers une couche limite turbulente quand Pr — <, ¢’est-a-dire quand la couche
limite thermigue est entiérement & I'intérieur d*une sous-couche laminaire dans laquelle le profil des
vitesses est linéaire.

Le cas d’une plaque plane 4 température uniforme ou avec un échelon de température est traité trés en
détail et une tabulation commode de la formule est donnée pour un certain nombre de cas.

Le cas d’une température de paroi variable est résolu de deux fagons. 1-—1a distribution de température
est remplacée par une suite d'échelons que I'on superpose; 2—une solution analytique exacte est
donnée dans le cas ot la fonction température consiste en un échelon suivi par une distribution donnée
analytiquement. Dans le dernier cas, les équations sont données sous forme analytique pour une varia-
tion de température représentée par un polyndme dont un cas particulier est 1a variation de temperature

linéaire.

Zusammenfassung—Es wird ein Problem behandelt, das zuerst mathematisch von Lighthill in anderem
physikalischen Zusammenhang gebracht worden war, Lsungen sind fiir den Sonderfall der Zwangs-
konvektion bei turbulenter Grenzschicht und Pr — «0 angegeben, d.h. fiir den Fall, dass die thermische
Grenzschicht vollstindig auf die laminare Unterschicht von linearem Geschwindigkeitsprofil
beschrinkt bleibt.

Die ebene Platte mit gleichmaéssiger Temperaturverteilung oder mit einem Temperatursprung wird
ausfithrlich behandelt und eine iibersichtliche Formelzusammenstellung fiir eine Reihe von Fillen
angegeben.

Der Fall der verinderlichen Wandtemperatur wird auf zweifache Weise gelost. Erstens, indem die
Temperaturverteilung durch eine Schrittfolge mit nachfolgender Superposition ersetzt wird. Zweitens,
indem eine exakte analytische Losung angegeben werden kann, wenn die Temperaturfunktion aus
einem Sprung besteht, dem eine gegebene analytische Verteilung folgt. Fiir letzteren Fall ist eine
Gleichung fiir eine polynome Temperaturinderung in geschlossener Form gegeben, Die lineare

Temperaturdnderung ist davon ein spezieller Fall.

Annorauna—B crarbe paccMarpuBaeTcA 3a¥aua, MaTeMaTHUeCKoe pewleHne xoropoit Guuio
noayueno JlafTxwrom npu gpyroM QusutecKoM cofepmanun. PenmeHns JaHbl AIfA Npeeib-
HOTG CJIy4Yas BHHYHGICHHO! KOHBeKIHN jepes TypOyleHTHH! NorpanuuHbeil ciaoff mpu
Pr— o0, T.e. KOTZA Temaopoil TOrpaHHUHBI €10l NOMHOCTBIO COCPHHMTICH B JAMHHAPHOM
HOXCIOE ¢ JMHEeHHBIM npodineM CKOPOCTH.

Jaércs geranpHoe paccMOTpeHMe CIy4ad Ni0CKoil IJACTHHH IPU NOCTOAHHOM U CTyHeHYa-
TOil M3MeHAWIWEHCH TeMmeparype, a KIA pPAXA CIyvaes GopMyInl cBefeHs B Talmumsr,
vro6HEIe 1A HpUMEHeHHd.

Cayuait nepeMenHoll TeMuepaTypsl CTeHKH pemiaercd Asymsa chocobamu. Bo-mepsBHX,
pacmpeneienue TeMmepaTyp BaMeHfeTCA MNOCIEJORATENBHOCTBIO CTyMeHell M HCHONB3yeres
HX cymepnosuimsa. Bo-BTopsix, J38TCA TOUHO® AHAJHTHYECKOE pellenHe ATIA CAydYas, KOITa
TeMaepaTypHaa GYHKUIA COCTOUT U3 CTYNEHbKH, 33 KOTOPOi ClefyeT fanHoe aHAMNTHHECKOe
pacupeneilenne. B nocaejsem ciydae ;JaHa saMEHYTaA GopMa YPaBHEHMIl, KOFHA TeMIie-
patypa H3MeHAeTCA Kak Mo THHOM. YaCTHRIM ¢IydaeM 2TOro U3MeHeHWA ABJAETCH JHHelHoe

H3MEeHeHIIe TeMnepaTyphl.



