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THE TRANSFER OF HEAT ACROSS A TURBULENT 

BOUNDARY LAYER AT VERY HIGH PRANDTL NUMBERS 

J. KESTIN* and L. N. PERSENt 

Brown University, Providence, Rhode Island, U.S.A. 

Abstract-The paper considers a problem which was first treated mathematically by Lighthill in a 
different physical context. Solutions are provided for the limiting case of forced convection across a 
turbulent boundary layer when Pr + co, i.e. when the thermal boundary layer is wholly confined 
within the laminar sublayer whose velocity profile is linear. 

The case of a flat plate with a uniform temperature or with one step in temperature is treated in 
great detail, and a convenient tabulation of formulae for a number of cases is provided. 

The case of a variable wall.temperature is solved in two ways. First, the temperature distribution is 
replaced by a sequence of steps and supe~osition is used. Secondly, an exact analytic solution is given 
for the case when the temperature function consists of a step followed by a distribution given analyti- 
cally. In the latter case, closed-form equations are given for a polynomial temperature variation of 

which a linear temperature variation is a special case. 

LIST OF SYMBOLS 

constant; 
constant ; 
thermal diffusivity; 
constant; 
width of heated portion; 
constant; 
constant ; 
coefficient of skin friction; 
thermal conductivity; 
length of laminar portion of bound- 
ary layer; 
length of plate: 
average Nusselt number; based on 
total length E; 
local Nusselt number; based on 
current length X; 
local Nusselt number; based on 
distance x - x0, equation (22); 
integer exponent in power series for 
temperature distribution; 
Prandtl number : 
rate of heat flow per unit width and 
time measured at wall; 
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heat flux at wall ; 
Reynolds number based on length 
L at transition; 
Reynolds number; based on total 
length 1; 
local Reynolds number; based on 
current length X; 
local Reynolds number; based on 
x - X0, equation (22); 
local Stanton number; based on 
current length X; 
temperature; 
free-stream temperature; 
temperature at wall; 
free-stream turbulent velocity; 
average longitudinal velocity com- 
ponent in boundary layer; 
average transverse velocity com- 
ponent in boundary layer; 
friction velocity ; 
longitudinal co-ordinate; 
co-ordinate at temperature step; 
stretched longitudinal co-ordinate, 
equation (11) ; 
stretched width of heated portion; 
stretched width of step in tempera- 
ture, equation (43); 
transverse co-ordinate; 
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p. dimensionless transverse co-ordinate. 
equation (8). 

Greek symbols 
Blasius constant, equation (24); also 
parameter in incomplete gamma 
function, equation (17a); 
gamma function of argument a ; 
incomplete, complementary gamma 
function of argument 77 with para- 
meter a, equation (36); 
incomplete gamma function of argu- 
ment 77 with parameter a. equation 
(1%); 
velocity boundary layer thickness : 
thermal boundary layer thickness; 
similarity parameter, equation (13) ; 
temperature ratio, equation (33); 
temperature difference, equation (2) : 
difference between wall- and free- 
stream temperature; 
temperature difference, equation 
(32) ; 
difference between wall- and free- 
stream temperature ; 
temperature difference for n-th step : 
temperature step in step-wise 
approximation; 
dummy variable of integration ; 
kinematic viscosity; 
dummy variable of integration ; 
density ; 
variable defined in equation (IO) : 
shearing stress; 
shearing stress at wall; 
stream function. 

1. INTRODUCTION 

THERE exists one limiting case of forced con- 
vection across a turbulent boundary layer 
which can be solved analytically entirely from 
first principles. It is the case when the thermal 
boundary layer is confined entirely within the 
laminar sublayer. Such conditions prevail very 
close to the beginning of a thermal entry length 
in a boundary layer at all Prandtl numbers, or 
over the whole of the downstream length of a 
thermal boundary layer at very high Prandtl 
numbers, or more precisely when Pr + rc. 

8 .= T,,. ~ T (21 

is the temperature difference between that at a 
point x,y and at the wall. The boundary con- 
ditions for 6 are 

0 = 0 at y = 0 and all x 2 x0 1 

0 = Bm at x = _yO and all J* 2 0 t (la) 

0 = 0, at J’ = co and all x 2 x0 J 

with 

The attendant mathematical problem was first & = T,, - T, 
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solved by Lighthill [l] in an entirely diKerent 
physical context, namely in connection with the 
calculation of heat transfer rates across laminar. 
compressible boundary layers. The relevance of 
Lighthill’s solution to turbulent boundary 
layers was first pointed out by Spalding [2]. 

In the present paper we shall give an elemen- 
tary solution of the problem and work out its 
implications to a point when they can be applied. 

The amenability of the problem to such a 
treatment turns on two circumstances. First. 
there is no need to consider the whole of the 
velocity boundary layer, and attention can be 
confined to the laminar sublayer only. because 
the boundary condition for temperature “at 
infinity” is attained very fast, owing to the 
boundary layer nature of the solution for the tem- 
perature profile. This permits us to base the 
analysis on the laminar form of the energ) 
equation which can now be written 

id il9 8”ti 
11 ;- f L’ & = a ~- . 

cx ‘_, a_p 

using the notation of Fig. 1. 

FIG. I. System of co-ordinates and notation. 

Here 

(lb) 
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denoting the overall temperature difference, 
not necessarily constant, across the boundary 
layer. The second simplification consists in the 
fact that the variation of u with y is linear, so 
that the stream function can be written 

where 

I.*(x) = (T&x)/p:’ 2 = f;O($Cf)l;z (3) 

is the friction velocity, 

711) = $PCCf, (4) 

denoting the skin friction at the wall. Hence 

Thus the equation to be solved is 

‘;_ I’$ &d&;;?J,2;!$-il$ (6) 
- 1’ <, 

subject to the boundary conditions (la). 

we can first reduce the values of the dependent 
variable in the boundary conditions to pure 
numbers, namely 

The preceding equations have been written on 
the assumption that the physical properties of 
the fluid, its density p, kinematic viscosity Y, and 
thermal diffusivity CJ are independent of tempera- 
ture. In general, this is a poor assumption for 
liquids, because when their Prandtl number is 
large, their properties vary strongly with 
temperature. However, the variation of such 
properties with temperature is complex and 
cannot be taken into account at present. In 
applications it is therefore necessary to choose 
proper mean values. 

0 =Oaty =O andallx 2 x,, 

1 O=latx=x,andallyZO , (7a) 

O=laty = coandallx 2 x,, i 

and the partial differential equation is still 

In all problems of practical interest, the free- 
stream temperature T, can be assumed constant, 
but the wall temperature Tvr need not be constant. 
Thus 6, may be variable, and a prescribed 
function of x. We shall consider both cases, and 
in both cases we shall provide solutions which 
are valid from point x = xg at which the thermal 
boundary layer is assumed to begin its develop- 
ment. Smce equation (6) is linear, superposition 
can be employed to develop more complex 
solutions from simple ones. 

It is recalled that the energy equation can be 
simplified considerably by the application of the 
von Mises transformation [3, 45 in which the 
dependent variable is expressed in terms of x, 
and the stream function #. If this form were 
written it would become immediately apparent 
that in the present case it is more convenient to 
use the square root of the stream function, +li2, 
as the second independent variable, making it 
dimensionless by the factor v--ri2. In view of 
equation (3) this suggests the choice of 

as the independent variable. Substitution into 
(7b) leads to 

2. STEP IN WALL TEMPERATURE, VARIATION 

We begin by considering the case when the 
wall temperature T, is constant being equal to 
T, for x < x0 and to another value T, for 

,+ 
4 

v a@ _ a_ a20 
V, ax va(y+)a’ 

the constant a/v = l/R can be absorbed into 
the equation by putting 

X2 x,,, undergoing a jump at x = x,,. Hence 
Bm is now constant. 

From the nature of the problem it can be 
foreseen that the solution must appear in the 
form of a family of self-similar temperature 
profiles, because there exists no characteristic 
length which governs the development of the 
thermal boundary layer. Hence, the problem 
must be reducible to an ordinary differential 
equation, it must be expressible in terms of a 
single variable, say 9, and the only difficulty 
lies in indicting the required transformation. 

By introducing the ratio 

(7) 
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0‘ .x 1’- p+” (10) O-latv=Xl 

and the function c,lv can be absorbed by putting 0 =Oat7j =O )’ 

This equation can be solved by repeated 
x& = 

5 
i 2’* (11) integration. Its first integral is 
Xi, 

; dx. 

With these substitutions, equation (9) becomes 
d@ --.. := Ct?-? :s exp (_?) (16) 

80 a20 4 

g-@=s' (12) and the second integral is 

In order to take advantage of the observation 6%) = G t GY(-s, ?i (17) 

that the problem must lead to a set of self- where 
similar profiles, it is now necessary to find a y(a, 7) = fz e-h b-l dh (17a) 
combination of the independent variables 
r)(o‘, x+) which will reduce the second and third is the incomplete gamma function [S. 6. 71. 

boundary condition (7a) to one. It is easy to see Noting that 

that any expression of the form ~(a, co) = r(u) and that ~(a, 0) = 0 
a’” 

77 =-_ 

will achieve this, since 

(13) 
it is easy to show that 

r(3t 7) 
@(V, = r(g) (18) 

x = x0 corresponds to x+ = 0 
and renders 1 = z 

y = co corresponds to u = cc 
and renders 7 = m. 

The only remaining problem is to determine a 
value of the exponent m in equation (13) which 
will result in the transformation of equation (12) 
into an ordinary differential equation for O($ 
By substitution, we find that 

03 

7=G= 
y3afPt 

f 
x t’ dx: (14) 

9V3 _* ..- 
.v,, i’ 

constitutes the solution to our problem. The 
resulting universal temperature profile is shown 
plotted in Fig. 2. The values of the incomplete 
gamma function have been taken from [6] and 
the constant 

r(g) = 2.6784. 

A short table for the function O(T) is also 
given, Table 1. 

The rate of heat transfer is calculated from 
the heat flux gic at the wall, 

achieves our purpose, the numerical factor 9 
having been added on aesthetic grounds. Tntro- 

It is noted that at y = 0, dO,& is singular, 

ducing (8) we can also write 
but Mjay is regular. Referring to equation (16). 
we can write 

(y+yP/ 
7 = ---qp-’ (144 

d@ _ exp (-r) -.- _ --_- 
dT $‘“r($) (1%) 

Subs~tution of the appropriate form (14) into and from equation (14) 
equation (12) or directly into equation (7b) leads 
to the ordinary differential equation Brj y2L’; PI 

2-V 3v3.r * (19b) 

cl51 Hence 

for the function O(T), with the boundary 
conditions 
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37= 
y.3 I/: 

90 I,““*+ 
0 

FIG. 2. The universal temperature profile. 

Table 1. Values of the function 8(v), equation (18) and finally, from equation (19) it is seen that 
~___ 

? @(d 

OGO 0.0000 
0.02 0.3025 
OG4 0.3793 

_ 

31:3L.*/v ktImPF3 
48 = T(F . -p-Z’ 

The most convenient dimensionless 
obtained by introducing the local 

(20) 

form is 
Stanton 

0.06 0.4320 
0.08 0.4732 
0.10 0.5073 
0.12 0.5364 
0.14 0.5620 
0.16 0.5848 
0.18 06054 
0.20 0.6240 
040 0.7496 
0.60 0.8203 
0.80 0.8694 
la0 09032 
1.20 0.9272 
1.40 0.9448 
160 0.9576 
1.80 0.9670 
2.00 0.9743 
2.50 0.9862 
3.00 09924 
3.50 09958 
4.00 0.9976 

number, 

St, = qf 
pcz, U&D 

= oe53835 fw3 vY!vf) 
(x+)1’s (21) 

where 
3”3/T(&) = 0.53835. @la) 

It is now a simple matter to derive expressions 
for the local Nusselt number Nul which may 
be more convenient in applications. A short 
derivation yields the formula 

= O-53835 (&cf)1!2Re&(Pr/x+)1 3, (22) 

where 



360 .I. KESTIN and K. N. PERSEN 

Average Nusselt or Stanton numbers cannot be 
computed at this stage explicitly. because theii 
values depend on the variation of I..+.(X) along the 
flow. They will be discussed in connection with 
particular examples later, when more directly 
applicable equations will be given [section 31. 

When computing temperature profiles. it is 
found that existing tables [6] are inadequate at 
small values of 7. It is then useful to remember 
that [S. 71 

r(l/3, >)) _m 3,l 3(1 ~- iV -- ,I,+ + . .) (23) 

3. SPECIALIZATION TO THE CASE OF A FLAT 

PLATE AT ZERO INCIDENCE 

3.1. Isotliermal plate 
The preceding results will now be applied to 

a flat plate, and two cases will be considered. 
In the first case it will be assumed that the 
thermal boundary layer, &(_u). develops from 
the edge onwards, Fig. 3, so that so =. 0, and 
the plate is isothermal. The velocity boundary 
layer, S(X), will start by being laminar, will 
undergo transition, and then become turbulent. 
This, however, has no bearing on the resulting 
solutions, except for affecting the form of I’*(X), 
since all along the plate the thermal boundary 
layer will develop in regions where the velocity 

profile m(r) is linear.* Since not enough is i\n’\i 11 
about the conditions in the transition LUIK. it 
will be assumed that transition is sharp. occurs 
at a definite critical Reynolds number and r!tat 
its \,alue has been determined inclependentl:, 

III the laminar range 

with 

Then 

.v -- :: .I‘;: I’*(X) dx/v + Lll :‘. I, :j 4 @’ _y.’ t 

and the local Stanton number is given by 

St, = 0.339 PI.-’ :sRe;’ “. 25) 

where now 

It is remarkable to note how little this expression 
differs from the Blasius solution for the flat 
plate [3]. 

St s = 0.332 p,.-2 3Re-‘!’ J u 25a) 

which is not restricted to high Prandtl numbers. 
The form of the equation is reprtiduced 
accurately, and only the numerical cons;!ant is 
too high by about 2 per cent. Since equation 
(25a) can also be derived from the Reynolds 
analogy 

by adding the empirical factor Pr ‘? .’ IJ it, 
equation (25) demonstrates that the resulting 
relation remains quite accurate for \ery high 
Prandtl numbers. 

In the turbulent range. the shearing ,tress 
can be adequately approximated by the equation 
derived from the +th power law, on condition 
that the Reynolds number is not too high. Thus 

2’* 
= @0296)1/Z ~~‘OL,l/lO~Y-l/lO~ (26) 

.s The persistence of a linear segment of the velocity 
profile at the wall throughout the transition zone has 
been observed by Klebanoff who was kind enough to 
communicate this matter privately to one of us (J. K. I FIG. 3. Isothermal case. 
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It was shown by Prandtl [3] that a turbulent 
boundary layer on a flat plate behaves as if it 
had started at the leading edge*, consequently 

x- = i;; c*(x) dx/v 

= J$(O.O296) 1 2 "-9 10 ~-9/lox""lo ~ 

and 

theories of heat transfer on a flat plate. It is 
well-known that the above theories are applicable 
only to Prandtl number differing little from 
unity [8] when they can all be fitted numerically 
by the equation 

Nu, = 0.0296 Rez’9 Pr1i3. (3Ob) 

St, = 0.161(Pr)-2 3Re;“is. (27) 

There is no difficulty in computing the average 
values, and in this case it is perhaps more 
convenient to employ the Nusselt number 
based on the total length 1 in the working 
formulae. For a laminar portion of length I, we 
obtain 

Nu, = 0.679 Prl 3 Re::“. 

For a plate of length 1 on which the laminar 
portion extends over a length L(L < 1), we 
obtain 

A comparison of equations (30‘) and (30b) shows 
that the elementary theories reproduce correctly 
the dependence on the Prandtl number, but that 
the Reynolds number dependence is over- 
estimated, the exponent being equal to 0.8 
instead of 0.6; they cannot, therefore, be applied 
to fluids with high Prandtl numbers. The two 
relations, (30) and (30b) provide, therefore, an 
upper and a lower bound for the Nusselt 
number, when the Prandtl number lies in a 
range intermediate between unity and a very 
large value. 

3.2. Step in wall temperature 

where 

is the Reynolds number for the point of transi- 
tion, and the subscript 1 denotes that the 
respective groups refer to I as the characteristic 
length. 

Finally, for a flat plate with a tripped boundary 
layer, i.e. a turbulent boundary layer starting 
at the leading edge 

and 

Nu s = 0.161 Re3;j Prl 3 * (30) 

.Jlr~~ = 0.268 R@ij P$X. I W) 

This result can be used to evaluate the applic- 
ability of the Prandtl-Taylor or von Karman [3] 

* This assumption is sufficiently accurate for many 
purposes. In actual fact, the virtual beginning of the 
turbulent boundary layer is not exactly at the leading 
edge, and this circumstance can be easily allowed for if 

The next case of importance occurs when the 
temperature along the plate is not uniform, but 
undergoes a step-like change from T,, = T, 
(0 = 1) at x 5 x0 to T,,. i Tm (0 = 0) at 
x > so. Depending on the position of x0 with 
respect to the point of transition at x = L, it is 
necessary to distinguish a number of specific 
cases. Each case involves rather obvious 
integrations which need not be discussed in 
detail. The results of these integrations are 
given in Table 2 which includes the cases 
discussed in section 3.1 for the sake of complete- 
ness. 

4. VARIABLE WALL TEMPERATURE 

4.1. Lighthill’s solution 
Lighthill’s original paper [l] contained an 

extension of the preceding theory to the case 
of an arbitrary temperature distribution along 
the wall. The local heat flux il(. at a position x 
along a cylindrical wall having an arbitrary 
temperature distribution T,,.(.r) from section 
so = 0 onwards was given in the form of the 
following Stieltjes integral 

3l 3Pr1’3c*(x) 

s 

.c 
4zcW = --k T.v 

d W) 
,, [xqx) - x+(5‘)]““’ 

i?l\ \“-I necessary. 
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Lighthill’s equation (29) of Ref. 1 has been When the temperature distribution 8(t) in- 
transcribed here in our notation in order to volves discontinuities, in particular when it is 
clarify the sequence of operations required to given as a sequence of steps from measurements, 
evaluate &,(x). First, Fig. 4, it should be noted it is necessary to perform the integration without 
that here introducing (x). This is best done by 

eliminating, for example graphically, the co- 
ordinate [ from the two functions ~--(4) and 
-9(f) and by integrating the resulting relation 
[x+(x) - x+(8)1-l,‘“, in which X+(X) is a constant 
parameter as far as the integration is con- 
cerned, as already mentioned, and by integrating 
with respect to 8 directly. 

It is clear that either method is cumbersome 
in practice. The principal motivation for 
undertaking the calculations described in the 
remainder of this section was to arrive at 
formulae which could be more easily adapted 
to actual computations. 

FIG. 3. Notation for Lighthill’s solution, equation (31). 
The simplest practical case of variable wall 

temperature, apart from the ones considered 

B =T-Tm (32) 
in sections 2 and 3, involves a portion of the 
wall of length b heated to a constant temperature 

and that, in general, in problems involving a T,,, different from the remainder which is main- 
variable wall temperature T,(x), the definition tained at T,, Fig. 5(a). The present case is also 
(32) is more convenient than that in equation important in that it will illustrate the method of 
(2) because only cases in which T, = const are dealing with completely arbitrary wall-tempera- 
of practical interest. We shall give preference ture distributions to be discussed in section 4.3. 
to the variable B over 0 in the present section. The general method makes systematic use of the 
Secondly, it should be noted that x+(x), defined fact that the energy equation (1) is linear and 
in equation (11) denotes a constant value in the that superposition can be employed to generate 
process of integration, namely the value of x+ complex solutions from the simple solution 
at the station at which Qzu is being evaluated. The given in equation (18) of section 2. 
quantity x+(e) is defined as It is now more convenient to put 

and denotes a function, 5 being the dummy 
variable of integration in equation (31). instead of the definition in equation (7). Equation 

The procedure to be adopted in evaluating (12) still remains valid in either of the two 

the integral (3 1) depends on whether the tempera- regions marked I and II in Fig. 5. However, 

ture distribution S(5) is continuous or whether owing to the change in the definition of 0, the 

it involves step-like jumps. In the former case boundary conditions (15a) will change to 

d@(f) = ([) d[, and the evaluation is straight- O=OatT=rC, 
forward, except that one reservation must be 
made. Often, the function, 8(f) will be given by 

0 = 1 .at 7 = 0 1 
(341 

a discrete set of measured values, and the it being necessary to exercise some care in the 
determination of 8(f) will require fairing. As a interpretation of 7 for either of the two regions. 
result. the calculation may be grossly in error. The change in the boundary conditions has the 
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4.2. Two steps in temperature 
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SECTION I 

I 
‘ 

/ @=I 

0 SECTION II 

FIG. 5. Two steps in temperature. 

effect of changing the solution in equation (18) 
to 

(35) 

where 

is the complementary incomplete gamma 
function [7], and r(a) denotes the ordinary 
gamma function.* 

The solution in region I remains unaffected by 
the second step, and is the same as for the case 
illustrated in Fig. 5(b). It is thus 

In region II it is necessary to take into account 
the second step in temperature which occurs at 
.X = x0 + h or at .x+ = XC. We therefore con- 
sider the case illustrated in Fig. 5(c) for which 
the solution will be identical with (37) except 
for the fact that the origin must be shifted to 
x+ = x; so that x.1. must be replaced by 

* This unfortunate notation, though accepted, may be X+ - .x; in the argument of the function, where 
somewhat confusing, but in this paper the two functions 
r will always be written with the parameters and variables 

s 

Y# ib 1 

shown in the parentheses to avoid misunderstandings. 
s;; z77 -,! ds. (38) 

,tll 
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Furthermore, a negative sign must be appended 
since 0 decreases by unity instead of increasing. 
Superimposing the cases shown in Figs. 5(b) 
and 5(c), we obtain the boundary conditions 
which are valid in region II, Fig. 5(a). At 
.Y = x0 + b, the temperature profile consists 
of 0, with the boundary condition for case 5(c) 
namely 0 = 0 superimposed on it, and is the 
one actually prevailing. Consequently, in region 
II, we have 

by the formulae of section 2, whereas the rate 
of heat transfer in region II can be easily 
calculated by differentiation from equation (39). 
In this manner it is found that 

(see equation (21a)), and that 

The parameter xt defined in equation (38) and 
appearing in equation (39) characterizes the 
extent of the zone of elevated temperature 
along the wall. It is easy to see from equations 
(37) and (39) that the temperature field is 
continuous at x = x0 + b, i.e. at the point 
where the wall temperature drops suddenly 
from T,, to T,, because 

Furthermore 
r(+, a) = 0. 

a01 I%11 - =_-..__- 
ax+ ax+ at x = x0 + b 

at any value of .y+, because 

The rate of heat transfer in region I is given 

or 

(42) 

Since the problem under consideration in- 
volves a constant imposed tempera~re 
difference, T,,. - cr30, the local rate of heat 
transfer dE, is proportional to it. Thus a Stanton 
number can be formed. In more complex cases 
the Stanton and Nusselt numbers lose their 
utility because such problems do not contain a 
physically meaningful characteristic temperature 
difference for reference. 

It is interesting to examine the trend in the 
form of the temperature profiles downstream 
from the second step in temperature. This is best 
done by considering a specific example, Fig. 6, 

FIG. 6. Temperature profiles downstream of the second step. 
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with xt = 1. The temperature profiles have been 
plotted as 0 =- (T -- r,)/(r,,, - Y’,) against 
_v+W’~/~~~~ for convenience, the plots including 
the values xf = 1.0. l-1, 1.2, 1.5 and 2.0. It is 
interesting to note how fast the disturbance 
caused by the second step disappears on pro- 
gression in the downstream direction. The 
broken curves in Fig. 6 represent temperature 
profiles which would exist at the respective 
positions x+ if the wall temperature ‘if,,. continued 
at its constant value without suddenly decreasing 
to zero at x+ := 1. A comparison of the two 
sets of profiles gives an idea of how deeply the 
sudden drop in temperature penetrates into the 
boundary layer. 

4.3. Arbitrary te~~i;e~af~~e distribution; stel~-~~~ise 
approx~~at~o~~ 

The preceding case can be easily generalized 
to an arbitrary temperature distribution, Fig. 
7, if the latter is replaced by a sequence of 
discrete jumps. The partial solution for the n-th 
jump at 

can be written 

The complete solution for the inter\-al 

.Ybl;Z .: cl--- -< .Y&,+,) 

is thus seen to be 

(44) 

It is equally easy to write down the expression 
for the local heat flux, namely 

in the interval (43a). Alternatively 

ii,.(X) = - 0.53835pc,a,(x)Pr-“” 

It is easy to verify that equation (45a) reduces 
to equation (42) for the case of two consecutive 
equal steps of opposite sign. There is little 

+ 
Ad, 

x+ - 
b,D 

FIG 7. Arbitrary temperature distribution. 
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advantage in representing the heat flux in the 
form of a Stanton number, because now 46, 
denotes an arbitrarily chosen step in temperature 
to which no physical meaning can be attached, 
as anticipated in section 4.2, and because the 
local rate of heat transfer does not appear in a 
form involving the local temperature difference 
9W,W 

The preceding formulae are easy to apply in 
practice, and for a given smooth temperature 
variation, it is always possible to inscribe as well 
as to circumscribe a step polygon, Fig. 8, in order 
to obtain two bounds for iW(x). The total rate 
of heat transfer & is obtained by integration 
in the usual way. 

- . 

FIG. 8. Two bounds for the solution. 

The relation in equation (45a) provides a 
complete solution to our problem, but there is 
some advantage in adopting a more analytic 
approach which leads to an alternative form of 
the solution. 

4.4. Arbitrary temperature distribution; analytic 
solution 

When the temperature distribution along the 
wall, 6,(x), is given in an analytic form, it might 
appear that the most convenient method of 
writing the solution is simply to pass to the limit 
of A@,, + 0 in equation (44) or (45a) thus 
replacing the sums by integrals. A straight- 
forward passage to the limit reduces equation 
(45a) to Lighthill’s form, equation (31), and this 
would cause the difficulties discussed in section 
4.1. It is, therefore, preferable to start with 
equation (12) which is seen to be valid for St. 
i.e. with 

ati a39 
CT,:=-. 

CXT au2 (46) 

This being a linear equation, it is natural to solve 
it by the use of a transform, and in this con- 
nection the Hankel transform proves to be very 
convenient. It would be tedious to repeat here 
the otherwise standard computations, and it is 
sufficient to quote the final result, namely 

x e-t t-2:3 dt . (47) 

or alternatively 

%a, x+> 

J s+ 8,?(z) exp [-u3/9(x+ - z)] dz = __.. 
33/3&(F) 0 (x' _ ;)4,3 --) 

(47aI 

where $Jz) is the variation of the wall tempera- 
ture 6,, expressed in terms of the variable x-. 
i.e. a,(~+). 

It can be verified that either of the forms (47) 
or (47a) satisfies the differential equation (46) 
and the boundary conditions 

$=Oforx+->Oanda-ta,i.e.y+-tc~ 

6 = 9,(x+) for u 3 0 and any x’, i.e. for y+ 3 0. 

(47b) 

Substituting u from equation (10) and noting 
that 

1 
-__ = 0.019928 
3 ":"r(g) (47cJ 

we can also write 

79(x+, yi) = O-019928 yLW3 

J z+ TV, exp [- (yT)3Pr/9(x+ - z)] dz 
x - 

0 
(x+ - ,)4/3 

The gradient of temperature at the wall 
involves the factor 

at9 3113 d,,(O) exp (- U3/9xL) 
_=_ __- 
8U r(1/3)- (,.)1!3 

+ J x* 6,,(z). exp [- 2/9(x- - zo)jcJ (48) 

0 
(xf- 2)1,3 

R 
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in which D + 0 must be substituted. The expres- For the power series 
sion has been established for the case when $J,(x~ 
undergoes a jump G,,.(O) at .Y f ._ 0 and then _ c 
varies continuously in a manner prescribed by 

/j,~ .4,,(.Y -1” 
II : // 

79&). The local heat flux is then 

&(x) = 0.53835 pc’,t.*(x)Pr -2 :’ 

Readers familiar with the theory of Stieltjes 
integrals might have been in a position to write 
down equation (49) directly from equation (3 1) 
derived by Lighthill, realizing that the first term 
in square brackets is the contribution due to 
the initial jump B’,(O), and that the second term 
in it, the integral, represents the contribution of 
the continuous part of the temperature variation, 
all upstream of the position X. It is seen from 
equation (49) that the local heat flux is no 
longer proportional even to the local tempera- 
ture difference 6Jx), but depends in an intimate 
way on the whole of the upstream temperature 
distribution zYi,,(x>. 

5. SPECIAL CASES OF PRACTICAL I~~ORT~CE 

Considering the large number of possible 
temperature distributions as well as the possible 
forms of U,(X), it is realized that the formulae of 
the preceding section cannot be specialized to 
the same extent as those in section 3. Neverthe- 
less, in order to facilitate practical computations, 
it is useful to record explicit expressions for wall 
temperature distributions given by a power 
series. Considering one term of the series, i.e. 

,GW = A&X-)“, 

where n is an integer, it is possible to show 
directly by substitution into equation (49) that 

v-e obtain the sum 

pc,z.*(x)Pr-’ 3 
&.(s) -= 0.72901 --(.t.-t’- -- - 

12.~ 0 

Finally, for 

:I,.=-Ax -BB. 

we have 

&(x) = 0.53835 pcar*(xj St.3 (3 Ax7 - 231. 
(.Y )’ 3 

(52, 

Some readers may prefer to approximate an 
empirical temperature distribution (1 ,,.(s). ex- 
pressed in the form Q&X+), by straightline 
segments rather than by steps. In such rdses 
equation (51) will prove to be of value. 
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R&m+-L’article considtre UR probleme qui a ete traiti math~~tiquemeRt pour la premiere fois par 
Lighth~l pour des conditions physiques differentes. Des solutions sont don&s dam le cas de la 

convection for&e B travers une couche limite turbulente quand Pr --f m , c’est-a-dire quand la couche 
limite thermique est entierement a l’intbieur dune sous-couche laminaire dans laquelle le profil des 
vitesses est lineaire. 

Le MS d’une plaque plane a temperature uniforme ou avec un echelon de temperature est trait& tres en 
detail et une tabulation commode de la formule est don&e pour un certain nombre de cas. 

Le cas d’une temperature de paroi variable est resolu de deux fqons. I-la distribution de temperature 
est remplacee par une suite d'tchelons que l’on superpose; Z-une solution analytique exacte est 
don&e dans le cas oii la fonction temperature consiste en un echelon suivi par une distribution donnee 
analytiquement. Dans le dernier cas, les equations sont don&es sous forme analytique pour une varia- 
tion detempCraturerepresentieparunpolynBmedontuncasparticulierestlavariationdetemperature 

liniaire. 

Zusammenfassung-Es wird ein Problem behandelt, das zuerst mathematisch von Lighthill in anderem 
physikaiis~hen Z~~enhang gebracht worden war. Lijsungen sind ftir den Sonderfall der Zwangs- 
konvektion hei turbulenter Grenzschicht und Pr + CO angegeben, d.h. fur den Fall, dass die thermische 
Grenzschicht vollstPndig auf die laminare Unterschicht von linearem Geschwindigkeitsprofil 
beschrankt bleibt. 

Die ebene Platte mit gleichmlssiger Temperaturverteilung oder mit einem Temperatursprung wird 
ausftihrlich behandelt und eine tibersichtliche Formelzusammenstellung ftir eine Reihe von Fallen 
angegeben. 

Der Fall der verlnderlichen Wandtemperatur wird auf zweifache Weise gel&t. Erstens, indem die 

Tem~raturve~eilung durch eine Schrittfolge mit nachfol~nder Su~rposition ersetzt wird. Zweitens, 
indem eine exakte analytisehe Losung angegeben werden kann, wenn die Temperatu~unktion aus 
einem Sprung besteht, dem eine gegebene analytische Verteilung folgt. Ftir letzteren Fall ist eine 
Gleichung fiir eine polynome Temperaturlnderung in geschlossener Form gegeben, Die lineare 

Temperaturiinderung ist davon ein spezieller Fall. 

.hIBOTl3~H$i-~ CTaTbe pacCxaTpIfBaeTCn 3axatta , )faTeMaTmIecKoe peureaue KOTOpOft 6~~0 
no.Tyueao ~~a~Tx~.l~~~o~~ nprr ~pyrou ~~3~I~Iec~o~t co~ep~au~l~. Pemeanrr fiaribx .&qff npeaenb- 
HOI-O CJy'IaFf BbIHy~~eKHO~ f{OHBeK~IfII nepe:I Typ6y~IeHTHbff~ nOrpaHIf~H~~ CnO& IfpI 

Pr+ Co, T.t?. IcOrJfa TeffJfODOii ~OCpaHlfnfIbIil C.lOn nO.'IHOCTbIO Co~epHi1fTCf-I B JaMIfHapHOM 

IIoAc;Ioe c .llIfHefiHbI,f npo@ff.se~f CKO~O~TII. 

AaeTcn AeranbKoe paccMoTpeHKe cny~affnwwon nnacTffHbl,npff II~CTO~HH~~~ Ii cTyneHua- 

~oti IfaiweffffXnqetfcs TebfnepaType, a &III pn~a c;lyYaen (POpMyJbI cBe,qeHbI R Ta6nKnbr, 

y~obebre &3R: IflNfMeHeHWf. 

C.?yqarY IfepeMeHnOfi TeanepaTypbI CTeHKIi peuraeTcR AB~MR cnocobabfa. .BO-uepDbfX, 

pacnpeAe~eH~e Te~nepaTyp 3anfeKneTc~ noc~e~ouaTe~buocTb~ cTyneHe~ II ~fc~o~b3yeTcn 

us cynepnoaamfn. BO-BTO~~IX,A~~TCS TO~HO~ aKa~~IfTffqecKoe pemerfne Ann c.nyYan, Korna 

TellfffepaTypHaR f+yHKufInCOCTOIIT ff3CTyneKbKLi, 88 KOTOpOticJfe~yeT~aHHOeaIfaJffITtiLIecHoP 

pacnpene2eaffe. B noc.wJHeM cnyrae aaHa :Ia5fIiKyTa3 +optia ypanHeHIfti, Korga TeMne- 

PaTSpa 113MeHReTCn Iiali no;IIIHOM. qaCTHhIY c.-Iy'Iae?f aTOr EI3MeHeIfMR FfBJIReTCR JIIIHeiHOe 

If3MeHeHIie TWnenaTypbI. 


